

Current features and technological advances

Dr Ian Armstrong Principal Physicist

Nuclear Medicine Centre Manchester University NHS Foundation Trust IPEM Introduction to PET : 24th – 25th May 2021

Analogue PET????

Armstrong household c1983

University of Birmingham. Courtesy Peter Julyan

Time-of-Flight

Without TOF, no information of whereabout annihilation occurred on line of response

TOF allows for estimation of location of annihilation event

Gain is not as large

Wong *et al. J Nucl Med* 1983; **24**:52-60 Conti *et al. IEEE Nucl Sci Symp Conf Rec.* 2011; 2470-14

Effective TOF sensitivity

- TOF improves SNR (not spatial resolution!)
- Gives the effect of increased sensitivity
- Can define effective sensitivity S_{eff}, which is dependent on – object size D
 - intrinsic sensitivity S_{int}
 - annihilation positional uncertainty due to TOF Δx

$$S_{eff} = S_{int} \times \frac{1}{1.6} \times \frac{D}{\Delta x} \qquad \Delta x = \frac{c\Delta t}{2}$$

511 keV photon is absorbed in scintillation crystal

Several thousand optical photons are produced in the scintillation crystal

Some of these will propagate through the crystal towards the photodetector

The optical photons arrive over a finite time range at photodetector

Photodetector converts the optical photons into an electrical charge

Silicone Photomultiplier (SiPM)

- A SiPM is an array of several thousand singlephoton avalanche diodes (SPADs)
- Each SPAD works in Geiger mode so have a discharge upon incident photon
- Can sum the number of discharged SPADs to derive energy and positional information

Manchester University NHS Foundation Trust

Scintillator + SiPM

- Traditional photomultiplier tubes (PMT) have relatively low quantum efficiency (around 25%)
- Quantum efficiency for SiPM is greater (around 35 to 40%)
- PMTs have single-photon timing jitter of few hundred picoseconds to nanoseconds
- SiPMs have typical single-photon timing jitter of 100 to 200 ps

Scintillator + PMT

- These two characteristics means that SiPM have a superior ability to measure the arrival time of the 511 keV photons
- Superior performance for Time-of-Flight PET
- Still have the scintillator crystal

Scintillator + PMT

Scintillator + SiPM

Manchester Univ

NHS Foundation Trus

PET-CT comparison

System	Detector	Intrinsic Sensitivity (cps/kBq)	TOF Res (ps)	NEMA Performance Reference
Biograph mCT	PMT	9.7	530	Jakoby 2011
Discovery MI DR	PMT	6.5	550	Chicheportiche 2020
Biograph Vision 450	SiPM	9.1	215	Carlier 2020
Biograph Vision 600	SiPM	16	215	Sluis 2019
Cartesion Prime	SiPM	13.5	258	Not available yet
Discovery MI 4R	SiPM	13.5	385	Chicheportiche 2020
Discovery MI 5R	SiPM	20.7	385	Pan 2019
Discovery MI 6R	SiPM	30.0	385	Not available yet
Vereos	SiPM	5.2	310	Rausch 2019

PET-CT TOF effective sensitivity

- 100 ps TOF seen as "the next goal"
- Active area looking at detector design
- Alternative scintillators

Cates and Levin. *Phys Med Biol* 2018; **63**:115011 Pourashraf *et al. Phys Med Biol* 2021; **66**:085005

(b)

(c)

(a)

And then the future future...

Non-TOF back-projection

TOF back-projection with 10 ps FWHM CTR

https://the10ps-challenge.org

Geometric efficiency

"Total-body" LAFOV systems

- EXPLORER
 - 194 cm AFOV
 - SiPM : 430 ps TOF
- PennPET Explorer
 - 64 cm AFOV
 - SiPM : 249 ps
- Siemens Biograph Quadra
 - 106 cm AFOV
 - SiPM : 220 ps

Cherry 2018 J Nucl Med 59:3-12

NHS

NHS Foundation Trust

Manchester University

Karp 2020 J Nucl Med 61:136-43

Benefits of LAFOV systems

EXPLORER Badawi *J Nucl Med* 2019; **60**:299-303 • The increased sensitivity (intrinsic and effective) reduces requirement for post-reconstruction smoothing to control noise

Manchester Uni

- Detector design (smaller crystals) produces higher-resolution images
- Reconstruct into small voxels
- All this leads to improved image quality and increase visualisation of small lesions

• Iterative reconstruction produces an estimate of activity distribution

Manchester Universit

NHS Foundation Trus

- The estimate of the activity distribution is said to **converge** to the most likely activity distribution
- At convergence, more iterations does not change estimate

But a problem is noise!

1 iteration

2 iterations

15 iterations

25 iterations

Images courtesy of Ian Croasdale, GE Healthcare

Reconstruction algorithms

	Siemens	GE	Correction
Resolution / PSF modelling (recovery)	HD·PET	Sharp IR	Reconstruction
Time-of-flight	ultra-HD·PET (when with above)	VuePoint FX (VPFX)	Acquisition and reconstruction
Regularisation (penalisation)	Not available	Q.Clear (includes all above)	Reconstruction

All of the above provide improved image quality and noise reduction

Impact on image appearance : Q.Clear

Liver Mean : 2.88 SD : 0.21 SNR: 13.7

Liver Mean : 2.92 SD : 0.28 SNR: 10.4

Q.Clear

TOF

Data courtesy of Dan McGowan, Oxford University Hospitals

Impact on quantification

- These algorithms all improve signal to noise
- Therefore, if noise is fixed then signal increases
 - Signal increase = SUV increase
- Most prominent increase seen in smaller lesions

Andersen *et al. Eur J Radiol* 2013; **82**:862 Teoh *et al. Eur Radiol* 2016; **26**:576

Table 5Diagnostic performance of OSEM and BPL in detecting
malignant nodules on the basis of semi-quantitative analysis using
optimum SUV_{max} threshold (3.5 and 4.4, respectively) and visual
analysis

	Semi-quan	Semi-quantitative		
	OSEM	BPL	OSEM	BPL
All (<i>n</i> =121)				
Sensitivity	60.4 %	67.0 %	84.0 %	86.8 %
Specificity	73.3 %	66.7 %	33.3 %	20.0 %
Accuracy	62.0 %	67.0 %	77.7 %	78.5 %
$\leq 10 \text{ mm} (n=31)$	1			
Sensitivity	44.4 %	55.6 %	100.0 %	100.0 %
Specificity	75.0 %	75.0 %	69.2 %	60.0 %
Accuracy	48.4 %	58.1 %	87.1 %	87.1 %
>10 mm (<i>n</i> =90))			
Sensitivity	65.8 %	70.9 %	89.9 %	89.9 %
Specificity	72.7 %	63.6 %	45.5 %	27.3 %
Accuracy	66.7 %	70.0 %	84.4 %	82.2 %

SUV_{max}: threshold OSEM 3.5 Q.Clear 4.4 **Table 5** Diagnostic performance of ordered subset expectation maximum (OSEM) and Bayesian penalised likelihood reconstruction (BPL) in detecting malignant nodes based on size, using optimum maximum standardised uptake value (SUV_{max}) threshold (3.0 and 4.0, respectively)

	Nodes > 10mm (n=24)		Nodes ≤ 10	Nodes ≤ 10 mm (n=88)	
	OSEM	BPL	OSEM	BPL	
Sensitivity	100.0 %	100.0 %	28.6 %	21.4 %	
Specificity	23.1 %	23.1 %	85.1 %	87.8 %	
Accuracy	58.3 %	58.3 %	76.1 %	77.3 %	

SUV_{max}: threshold OSEM 3.0 Q.Clear 4.0

> Teoh *et al. Eur Radiol* 2016; **26**:576 Teoh *et al. Eur Radiol* 2016; **26**:4098

- As image quality improve the ever-present degrading factor of motion becomes an increasingly relevant challenge to address
- Quicker scans may reduce motion due to discomfort
- But the patient still breathes!
- Breath-hold PET?
 - Still challenging on "standard" FOV, even with SiPM
 - Probably achievable on LAFOV systems
 - Match to CT

Incorrect localisation of lesions close to lung-liver boundary

Current gated respiratory motion compensation discards image data

Images are noisier – have to scan for longer

- "Current generation" motion measurement relies heavily on external monitoring systems
 - Increased set-up time
 - Not 100% robust
 - Assume external motion correlates with internal motion
- For something to be adopted into routine practice it needs to be
 - Accurate
 - Reliable
 - Easy
 - Affordable (or at least relatively!)
- Now have commercial PET data-driven gating (DDG)

Motion management

New motion algorithms are producing "motion-free" images without count loss

Motion management

OSEM

 $SUV_{max} 6.4$

SUV_{max} 8.6

Q.Clear SUV_{max} 6.2

Q.Clear+DDG SUV_{max} 7.6

Liberini et al. Nature Sci Rep. 2021; 11:2273

What does the future hold?

- Economy of scale for increased axial FOV
 - "Affordable" system with 40 to 50 cm AFOV?
- Improvements to TOF
 - 100 ps in the next 10 years
 - New crystal developments
 - New detector design
- Adoption of DDG / motion correction
- Utilisation of AI / machine learning
 - More automation
 - Improvements to image reconstruction
 - Better noise characteristics

Transition from Biograph mCT to Vision

	Biograph mCT Flow	Biograph Vision 600
Detector technology	PMT	SiPM
Crystal size	4.0 mm × 4.0 mm	3.2 mm × 3.2 mm
Axial field of view	22.1 cm	26.3 cm
TOF performance	540 ps	214 ps
Sensitivity	9.7	16.0
Effective sensitivity*	19.1	79.1

* For 25 cm uniform object, correcting for Gaussian TOF profile

Our department's main limiting factor

Patient size	CBM (torso)	Typical vertex – thigh scan time
< 85 kg and BMI < 28	2.2 mm / s	7 – 8 min
85 kg to 115 kg or BMI > 28	1.7 mm / s	9 – 10 min
> 115 kg or BMI > 34	1.3 mm / s	12 – 14 min
> 115 kg or BMI > 34	1.0 mm / s	16 – 18 min

Speed up over head (high uptake and low attenuation)

3.5 MBq / kg up to 280 MBq at 80 kg Fixed 280 MBq above and adjust bed speed
Utilising continuous bed motion (FlowMotion)

Benefits of SiPM systems : imaging times at MFT

- Biograph Vision FDG vertex to mid-thigh (CBM acquisition)
 - Median scan time: 8:44
 - Inter-quartile range: 7:46 to 9:55
- Biograph mCT FDG vertex to mid-thigh (Step & shoot acquisition)

Manchester Universit

- Median scan time: 16:00
- Inter-quartile range: 14:00 to 17:30
- No scans exceed 20 minutes (including wholebody)
- BUT: we did not change our administered activity!

Image quality : liver SNR on Biograph mCT

Image quality : Biograph Vision

SUV_{max} recovery : how it started, how's it going

Summary

- No change to administered activity
 - Largely based on manually dispensing
- Decreased scan time
 - Now scanning in approximately half time
- Improved image quality
 - Increased and more consistent image quality

Manchester University

NHS Foundation Trus

– Increased visualisation and $\mathrm{SUV}_{\mathrm{max}}$

Thanks for listening

ian.armstrong@mft.nhs.uk

Out with the old In with the new

Dr Glen Gardner Clinical Research Centre Ninewells Hospital Dundee

PET Reconstruction Times (Typical)	HD•PET*	ultraHD•PET*	
Reconstruction time per bed ¹ (200x200 matrix, 81 imaging planes)	25 sec	25 sec	
Reconstruction time per bed with TrueV ¹ (200x200 matrix, 109 imaging planes)	30 sec	35 sec	
PET NEMA 2012 Performance (Typical)			
Scatter fraction at Peak NECR	37%		
Scatter fraction (low activity conc.)	33%		
Count rate accuracy (∆r mean bias ≤22 kBq/cc)	+/-4%		
Count rate accuracy (Ar mean bias @ peak NEC)	+/-4%		
Spatial Resolution – Axial (Typical)	Standard Processing (256x256)	HI-REZ Processing (400x400)	
FWHM @ 1 cm (mm)	5.7	4.7	
FWHM @ 10 cm (mm)	6.2	6.1	
Spatial Resolution – Transverse (Typical)	Standard Processing (256x256)	HI-REZ Processing (400x400)	
FWHM @ 1 cm (mm)	6.0	4.5	
FWHM @ 10 cm (mm)	6.3	5.2	
	Standard	TrueV*	
Sensitivity (cps/kBq)	5.8	10.2	
Peak NEC rate (kcps)	107 @ ≤30 kBq/cc	180 @ ≤28 kBq/cc	
Peak trues rate (kcps)	380 @ ≤46 kBq/cc	610 @ ≤40 kBq/cc	
Peak trues rate (kcps)	380 @ ≤40 KBQ/CC	610 @ ≤40 KBq/CC	

NEMA performance measures represent average values derived from internal testing. All measurements are performed with the factory LLD setting of 435 keV.

Discovery MI Fully Digital PETCT Lightburst Digital Detector

Light Shield

Scintillator (LBS) crystal array with light guides and Enhanced Spectral Reflectors (ESR)

Silicon Photomultiplier (SiPM) with electronics (ASICS) designed for **Digital Compton Recovery**

Resolution	VUE Point HD ⁷		
Axial @ 1 cm	4.8 mm		
Axial @ 10 cm	4.7 mm		
Transaxial @ 1 cm	4.0 mm		
Transaxial @ 10 cm	4.5 mm		

LightBurst Digital Detector			
Sensitivity"	13.5 cps/kBq		
Timing Resolution	385 psec		
Sensitivity/mm [™]	0.068 cps/kBq*mm		
Scatter fraction"	41%		
Clinical NECR"	53 kcps @ 2.4 kBq/ml		
Peak NECR ^{**}	180 kcps @ 20 kBq/ml		
Coincidence window	4.9 ns		
Energy threshold	425 KeV		

tor
LBS-Lutetium based scintillator
3.95 mm x 5.3 mm x 25 mm
36 (19,584 total crystals)
9,792 (1,632 Hex-Anode SiPMs)
544 blocks
20 cm
70 cm
User defined 1-35

Discovery MI Fully Digital PETCT Lightburst Digital Detector

Light Shield

Scintillator (LBS) crystal array with light guides and Enhanced Spectral Reflectors (ESR)

Silicon Photomultiplier (SiPM) with electronics (ASICS) designed for Digital Compton Recovery

Resolution	VUE Point HD ⁷		
Axial @ 1 cm	4.8 mm		
Axial @ 10 cm	4.7 mm		
Transaxial @ 1 cm	4.0 mm		
Transaxial @ 10 cm	4.5 mm		

LightBurst Digital Detector		
Sensitivity"	13.5 cps/kB	
Timing Resolution	385 psec	
Sensitivity/mm [™]	0.000 cps/kBq*mm	
Scatter fraction"	41%	
Clinical NECR"	53 kcps @ 2.4 kBq/ml	
Peak NECR ^{**}	180 kcps @ 20 kBq/ml	
Coincidence window	4.9 ns	
Energy threshold	425 KeV	

tor	
LBS-Lutetium based scintillator	
3.95 mm x 5.3 mm x 25 mm	
36 (19,584 total crystals)	
9,792 (1,632 Hex-Anode SiPMs)	
544 blocks	
20 cm	
70 cm	
User defined 1-35	

SCAN IN 1/2 THE TIME AND 1/2 THE DOSE¹

The LightBurst PET detector does more than increase the clarity of the image; it increases the speed that you acquire it, helps to reduce the dose you expase your patient to and aids in strengthening your confidence to see smaller lesions. It's technology that was designed with a goal towards personalizing care. We focused on the variables that directly affect clinical outcomes to develop technologies that really make a difference, an innovative PET detector that cuts scan times and dose amounts in half.

A BRIGHTER WAY TO IMAGE

sinogram alignment (visual inspection)to check positioning of the line in prior measurements.

Sensitivity: 12.046 [cps/kBq] Attenuation: 2.133e-02 [1/mm] Half Life: 6586.2002 [s] Fit Type: 5 Point Study: Series: Frame 1 Acquired: 03-May-2017 14:46:39 Printed: 09-May-2017 12:57:39

Measurement cps/kBq	Scan Time	Centre	10cm offset
Manufacturers	NEMA protocol	12.60	11.88
Specification	BNMS response	13.5	13.5
Measured results			
19 April	15:35	12.48	
	15:53	11.43	
	16:07	12.21	
	16:29		12.75
24 April	13:41	12.22	
	13:56		12.72
	14:09	12.24	
	16:46	12.28	
	17:13		12.52
	17:32	12.69	
3 May	14:46	12.05	
	15:06	11.75	
	15:43	11.85	
4 May	15:37	12.11	
	16:06	11.87	
	16:19		12.16
	16:31		12.37
	16:31		12.37

- 2015 NIST standard for F-18
- 4% difference to old standard
- In 2015 the National Institute of Standards and Technology (NIST) published an article in the Journal of Nuclear Medicine revising the activity standard for the positron emitter F-18. They reported a change of 4% in its radioactivity standard for F-18.
- NIST standard 2008 -Cessna, J.T., et al. "Radionuclide calibrator measurements of 18F in a 3-ml plastic syringe." Applied Radiation and Isotopes 66.6 (2008):988-993).

<><><> MOVE PHANTOM AS FOLLOWS TO ALIGN IT TO CENTER AXIS OF THE SCANNER ... <><><> Looking from the front of the gantry:

<><>> raise this end of the phantom by 0.99 mm along the Vertical direction <><>> move this end of the phantom by 0.66 mm to the right along the horizontal direction

<><><> Looking from the back of the gantry:

<><>> phantom does not need vertical adjustment from the back of gantry <><>> move this end of the phantom by 0.16 mm to the right along the horizontal direction

Summary of Results & Conclusions

Sensitivity (cps/kBq)	Measured at Center per NIST 2015	Measured at 10 cm per NIST 2015	Center (4%) adjusted per NIST 2008	@ 10cm (4%) adjusted per NIST 2008)	Average center and 10cm per 2008
LSL (guarantee)			<mark>12.6</mark>	<mark>11.88</mark>	
Typical (datasheet)					<mark>13.5</mark>
GEHC phantom (official)	12.89	12.607	13.41	13.11	13.26
Ninewells phantom	12.584	12.414	13.09	12.91	13.0
AVERAGE (NHS – GE)	12.737	12.511	13.25	13.01	<mark>13.13</mark>

- The sensitivity of the Ninewells scanner is 13.13 cps/kBq.
 - This value is above the guaranteed Lower Spec Limit (LSL_{center} =12.6 cps/kBq) but it is below the typical value in data sheet (13.5 cps/kBq). There is no guarantee where a scanner will perform relative to typical spec. It can be on either side of the typical value.

ð

AFOV

20 cm

37ml Sphere: SUV_max

37ml Sphere: SUV_max

37ml Sphere: SUV_max

37ml Sphere: SUV_Vol

37ml Sphere: SUV_A50

Q400 Reconstruction

Bed Scan time (min)

Q400 Reconstruction

17ml Sphere: SUV_max

17ml Sphere: SUV_A50

17ml Sphere: SNR SUV_max

NHS

Tayside

NHS Tayside Protocol:

34 slice overlap

3 minutes bed time (4min for BMI>30)

3MBq/kg (minimum 200 MBq)

ARSAC

For systems that apply a PET bed overlap of >30 %, the minimum FDG administered activity is calculated as follows:

FDG (MBq) = 7 (MBq·min·bed-1·kg-1) × patient weight (kg)/emission acquisition duration per bed position (min·bed-1)

i.e. ~2.5 MBq/kg minimum

Patient	Weight (kg)	Scan dose (MBq)	3 MBq/kg	2.5 MBq/kg	
1	54	201	162	135	
2	64	201	195	160	
3	61	209	183	153	
4	60	206	180	150	
5	57	207	171	143	
6	50	204	150	125	

	osem	Q-200MBq Q-3MBq/kg Q-2.5MBq/kg			
Most fav	2.5	6.5	5.5	8.5	
Least Fav	10	2	5	5	

CT AC Dosage

CT AC Dosage

QClear 500

Qclear 400

Qclear 300

EARL Accreditation Result (SUVave50%)

EARL 2019 PET–CT performance standards

Now what does that button do?

An Introduction to PET Physics 24th and 25th May 2021, Online

PET Scanner QC and Performance Assessment

Peter Julyan Christie Medical Physics & Engineering The Christie NHS FT, Manchester, UK

An Introduction to PET Physics

24th and 25th May 2021, Online

FINAL PROGRAMME

DAY ONE

- 13:30
 14:00
 An Introduction to PET Physics

 Heather Williams, The Christie NHS Foundation Trust
- 14.00 14.30 **PET Scanner QC and performance assessment** Peter Julyan, The Christie NHS Foundation Trust
- 14.30 14.40 Break
- 14.40 15.30 Features of Current Generation PET Systems Ian Armstrong, Manchester University NHS Foundation Trust and Glen Gardner, NHS Tayside
- 15.30 16.15 Radiation Protection in PETCT Andy Bradley, Manchester University NHS Foundation Trust
- 16.15 16.30 Questions

QC & Performance

- QA Quality Assurance The System
- QC Quality Control The Tests
- Validation
 - Test the system as you're going to use it!
 - e.g. Whole-Body SUV, Dynamics, Different Isotopes
- Performance Measurement, i.e. NEMA
- Image Quality Phantoms
- Significance of Errors & Examples

(PET) Sinograms

- Points in image \rightarrow sine waves
- Detectors \rightarrow diagonal lines

Sinograms -> Fansums

Figure 1: Daily QC sinogram and fansum images (resulting from irradiation with a ⁶⁸Ge cylinder in the centre of the field of view on a Siemens system)

Manufacturers' PET QC

- Rotating ⁶⁸Ge Pin
 - e.g. GE 710
- ⁶⁸Ge Cylinder
 - Siemens
- ⁶⁸Ge Annulus
 - e.g. GE DR-MI, MI
- The future?
 - ¹⁷⁶Lu from L(Y)SO

e.g. GE's Daily PET QC – "DQA" Internal ⁶⁸Ge Rod Source

Graph for Current Reading (00141DST01)

Item	Low Limit	High Limit	Current Reading	R/Y/G
PET Coincidence Mean	203.4177	465.4177	329.3317	Green
PET Coincidence Variance	49.02311	113.02311	79.01493	Green
PET Singles Mean	3944.3755	7740.3755	5790.274	Green
PET Singles Variance	455.21167	939.2117	685.02814	Green
PET Deadtime Mean	-0.19595	0.03405	0.00387	Green
PET Timing Mean	-0.24987	0.25013	-1.4E-4	Green
PET Energy Shift	-8.0	8.0	-1.0575492	Green

e.g. Low Block

Graph for Current Reading (00141DST01)

Item	Low Limit	High Limit	Current Reading	R/Y/G
PET Coincidence Mean	1101.3138	1363.3138	1226.7034	Green
PET Coincidence Variance	264.50168	328.50168	286.62927	Green
PET Singles Mean	20831.115	24627.115	23617.803	Green
PET Singles Variance	2427.3413	2911.3413	2671.6418	Green
PET Deadtime Mean	-0.18267	0.04733	0.0175	Green
PET Timing Mean	-0.25021	0.24979	0.0082	Green
PET Energy Shift	-8.0	8.0	8.023587	Yellow

QC – WB ⁶⁸Ge Cylinder PET-CT

- Tests the whole process:
 - Database

PET

- PET inc. multi-bed, demographics
- CT & Attn. Corr.

Long Term Trends

Long Term Trends

Validation – Uniform ¹⁸F Cylinder

• Results, e.g. +/-10%

Errors in Components of SUV

(daily ⁶⁸Ge phantom)

(for EXAMPLE!)

Dose Calibrator
 ~0.6%
 (daily ¹³⁷Cs check)

Patient Weighing Scales
 ~0.4%

(not including effects of clothes, hydration, etc.)

Validation – Dynamics – PET-CT

Validation – Isotopes

Different positron abundances and half-lives

Performance Measures – Why?

- Objectively measure scanner performance
 - So?!
- Comparison to manufacturer specification
 - Did we get what we ordered?
- Comparison to other systems
 - Is it any good?
- Establish a baseline
 - Is it's performance stable?

...Give physicists something to do!

Leicester – Nov'2017

A Brief History of NEMA NU 2

• 1994, 2001, 2007, 2012, 2018...

Published by Published by Published by Mational Electrical Manufacturers Associations Mational Electrical Manufacturers Associations Mathodowners Mational	NEMA Standards Publication NU 2-20 Performance Measurements of Positron Emission Performance Measurements of Positron Parison Performance Measurements of Positron Parison Performance Measurements of Parison	NEMA Standards Publication NEMA NU 2-2012 Performance Measurements of Positron Emission Tomographs	NEMA Standards Publication NEMA NU 2-2018 Performance Measurements of Positron Emission Tomographs (PET)	
L		National Electrical Manufacturery Association	National Electrical Manufactures Association	

NEMA NU 2 – 1994

• Karp et al 1991 JNM <u>32(12)</u> 2342

- A With no inserts for the system sensitivity, count losses, uniformity and countrate correction measurements.
- B With line source inserts for the scatter measurement.
- C With hollow cylinder filled with water for the scatter correction measurement.
- D With hollow cylinder filled with air, hollow cylinder filled with water and solid cylinder for the attenuation correction measurement.

Figure 1-1 TEST PHANTOM

NEMA NU 2 - 2001

- Daube-Witherspoon et al 2002 JNM <u>43(10)</u> 1398
 - *e.g....*

Absolute Sensitivity

Image Quality

NEMA NU 2

2007

- Intrinsic activity of ¹⁷⁶Lu in L(Y)SO
- Watson et al 2004 JNM <u>45(5)</u> 822-826

FIGURE 1. RTR for a NEMA NU 2-2001 counting-rate test performed on an ACCEL, as a function of the average singles rate in a block detector.

2012

 Resolution out to 20 cm

NEMA NU 2 2018 – Modifications

- Spatial Resolution ²²Na as well as ¹⁸F
- Scatter & Count-Rate Positioning...
- Accuracy Analysis of 80% of slices
- Image Quality ALL spheres hot at 4:1 only

NEMA NU 2 2018 – New Tests 1

- Time-of-Flight Resolution
 - Dependent on source distribution
 - Uses count-rate data

Fig. 9. An example timing histogram. A parabolic fit is applied to the peak to obtain the maximum value of the distribution, then the FWHM is found by applying two linear fits at the regions around the half-maximum value.

Wang et al 2016 IE3-NS <u>63(3)</u> 1335

NEMA NU 2 2018 – New Tests 2

PET-CT Coregistration Accuracy

Figure 9-1 Position of Fiducial Markers and Masses on the Patient Table
NEMA NU 2 – Sensitivity

≥2001

- A test of how well you can fill the line!
- → Do WB PET-CT?

cf. 1994

<u>NB:</u> Pass/fail criteria should allow for your dose calibrator being slightly (<5%) off.

NEMA Testing ...And Finally

- Phantom "kit"
 - Beg, borrow or steal...
 - Buy Image Quality
- Specify details in tender:

- Inc. software (? version)
 & assistance from manufacturer
- Do hand-in-hand with manufacturer
 & ask a friend for help if needed!

Image Quality Phantoms

- Overall assessment of image quality
- VERY useful for testing system changes
- Also for testing data transmission procedures:
 - DICOM format
 - Anonymisation
 - ftp/CD writing, etc.

• May be required for entry into clinical trial

DAY TWO

PET in the context of multi-centre trials Lucy Pike, Kings College London

How Significant Are QC Errors? 1 GE DSTE8 – Block Error

• Daily QC \rightarrow Tune \rightarrow Repeat

Coincidence (1/14/2011 7:33)

Singles

(1/14/2011 7:33)

Deadtime (1/14/2011 7:33)

Timing (1/14/2011 7:36)

Energy (1/14/2011 7:36)

2 4 5 6 7 0 0 10 11 10 10 14 15 16 17 10 10 20 21 22 23

Item	Low Limit	High Limit	Previous Read	lingR/Y/G
PET Coincidence Mean	240_91177	271.66644	243.1808	Green
PET Coincidence Variance	55.90793	63.04511	57.41297	Green
PET Singles Mean	4179.026	4712.5186	4256.124	Green
PET Singles Variance	495.2568	558.4811	565.0335	Yollow
PET Deadtime Mean	2.0E-5	0.03326	0.00324	Green
PET Timing Mean	-0.06168	0.058319997	-0.0055	Green
PET Energy Shift	-8.0	8.0	-3.6697178	Green

Source Pin Count Rate Mean	Source Pin Count Rate Variance	Minimum Rate	Source Pin Life	Source Pin Status
5791.042	393.23245	4500.0	98 Days	Green

⁶⁸Ge Phantom Std. WB PET-CT Scan

ltem	Low Limit	High Limit	Current Reading	R/Y/G
PET Coincidence Mean	240.91177	271.65644	256.28912	Green
PET Coincidence Variance	55.90793	63.04511	59.47652	Green
PET Singles Mean	4179.026	4712.5185	4445.7725	Green
PET Singles Variance	495.2568	558.4811	526.86896	Green
PET Deadtime Mean	2.0E-5	0.03326	0.00326	Green
PET Timing Mean	-0.06168	0.058319997	-0.00168	Green
PET Energy Shift	-8.0	8.0	0.0	Green

Source Pin Count Rate Mean	Source Pin Count Rate Variance	Minimum Rate	Source Pin Life	Source Pin Status
5806.6943	391.68405	4500.0	99 Days	Green

Uniformity CoV (sd/mean) 14.30%

How Significant Are QC Errors? 2 Siemens TrueV – DEA Board Error

Error

Daily QC

Example – SUV Check / Validation

- Routine check (~every ³/₁₂)
- ~6 litre cylinder
- ~20 MBq spare ¹⁸F
- Standard acquisition
- What could possibly go wrong...?

. . .

SUV Check – Mixing

QA/QC – What Else?

- 101 other things!
 - Clock time on computers
 - etc.
- Also:
 - Tracer QA/QC
 - Patient preparation \rightarrow

DAY TWO

Clinical imaging protocols: Oncology Andy Harris, The Christie NHS Foundation Trust

Clinical imaging protocols: Infection and Inflammation Matt Memmott, Manchester University NHS Foundation Trust

Clinical imaging protocols: Cardiac Imaging Ian Armstrong, Manchester University NHS Foundation Trust

Clinical imaging protocols: Neuroimaging Matt Memmott, Manchester University NHS Foundation Trust

References & Further Reading

QA/QC

- Julyan P. Quality Assurance and Quality Control for PET-CT. In: Principles and Practice of PET/CT – Part 1 – A Technologist's Guide (EANM, Vienna) 2010 ISBN: 978-3-902785-00-8 [Free download from www.eanm.org]
- Pike L, Julyan P, Marsden P and Waddington W. Quality Assurance of PET and PET/CT Systems. (Report 108, Institute of Physics and Engineering in Medicine, York) 2013 ISBN: 978 1 903613 54 2
- NEMA Standards Publication NU 2-2018.
 Performance Measurements of PET.

Is It Worth Doing "Complex" QA/QC?

"Eat a live frog every morning, and nothing worse will happen to you the rest of the day." Mark Twain

An introduction to PET Physics

Dr Heather Williams Consultant Medical Physicist Group Leader for Nuclear Medicine The Christie Heather.Williams34@nhs.net

Paul Dirac 1902 – 1984 predicted the positron: 1928

 $\left(\beta mc^2 + c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3)\right)\psi(x,t) = i\hbar\frac{\partial\psi(x,t)}{\partial t}$

Dirac wave equation

Carl Anderson 1905 – 1991 discovered the positron: 1932 Nobel Prize: Nobel Prize

Properties of Positron Emitters

Pure positron emitters

Isotope	Half-life	Branching (β^+) in %	E max (MeV)	E mean (MeV)	R_{\max} (mm)	$R_{\rm mean}({\rm mm})$
¹¹ C	20.4 min	99.8	0.960	0.386	4.2	1.2
¹³ N	10.0 min	99.8	1.199	0.492	5.5	1.8
¹⁵ 0	2 min	99.9	1.732	0.735	8.4	3.0
18 _F	110 min	96.9	0.634	0.250	2.4	0.6
⁶⁴ Cu	12.7 h	17.5	0.653	0.278	2.5	0.7
⁸⁹ Zr	78.4 h	22.7	0.902	0.396	3.8	1.3

Positron emitters with prompt gammas

Isotope	Half-life	Branching ($\beta^+\!)$ in %	$\beta^+ E_{\max}$ (MeV)	Branching (γ) in %	γ E (PG) (MeV)
⁶⁸ Ga	67.8 min	87.7, 1.2	1.899, 0.821	3.2	1.077
⁷⁶ Br	16.2 h	25.8, 6.3	3.382, 0.871	74.0, 15.9	0.559, 0.657
⁸² Rb	1.3 min	81.8, 13.1	3.378, 2.601	15.1	0.777
⁸⁶ Y	14.7 h	11.9, 5.6	1.221, 1.545	82.5, 32.6	1.077, 0.627
¹²⁴ I	100.2 h	11.7, 10.7	1.535, 2.138	62.9, 11.2	0.602, 1.691

Conti and Eriksson, EJNMMI Physics 2016, 3: 8.

Nuclear Medicine Imaging

Annihilation and coincidence detection

Full-ring PET detectors

Commercially available in mid-1980s

e.g. GE Advance, installed in Manchester ~2000

Block detector scintillators

Fig. 4. a Monte Carlo calculated histogram distribution of absorbed 511-keV photons in different scintillators as a function of depth for normal photon incidence. The *bar* represents percentage absorbed photons from the total. **b** The cumulative photon absorption probability for 511 keV obtained from the distributions presented in **a**. The value associated with the type of scintillator indicates the depth at which 50% of the incident photons are totally absorbed

Comparison Between Main Physical Properties of PET Scintillation Crystals

Crystal	Relative light output (%)	Decay time (ns)	Density (g·cm ^{−3})	Effective atomic number (Z)	Energy resolution at 511 keV (%)
Nal(TI)	100	230	3.7	50	8
BGO	15	300	7.1	73	12
LSO	50-80*	40	7.4	65	10
GSO	20–40*	60	6.7	58	9

*Light output depends on cerium concentration and read-out device (PMT or APD). All crystals emit light with wavelengths ranging from 410 to 480 nm.

Sanchez-Crespo & Larsson 2006, EJNMMI 33:8; Tarantola et al 2003, JNM 44:756

from Casey & Nutt. 1986 IEEE-TNS NS-33:460

Fig 3. A schematic of the biograph PET/CT scanner. The axial separation of the two imaging fields is 80 cm. The co-scan range for acquiring both PET and CT is 145 cm maximum.

From: Townsend et al. 2003 Med 33: 193

Sem Nucl

Kemens Biograph PETCT scanner

More recent developments

PETMR

APD vs SiPM

APDs generate signal proportional to energy deposited by photons
SiPMs use arrays of APDs operated in Geiger mode above breakdown voltage
Both resistant to magnetic fields, but need to be operated under carefullycontrolled conditions

e.g. scintillator + APDs

Beyer T et al Magnetom FLASH 2010

More recent developments

PETMR

Digital detectors \rightarrow PETCT

More recent developments

Extended axial field of view scanners

Home News About EXPLORER Our Team Media Funding & Support Contact

Home = About EXPLORER

About EXPLORER

EXPLORER is a multi-institutional consortium established to design, develop and construct the world's highest sensitivity positron emission tomography (PET) scanner for a wide range of biomedical research applications.

PET is an extremely safe medical imaging technique that allows specific molecular targets and pathways to be imaged non-invasively using tiny amounts or radioactivel tagged compounds. There are thousands of PET scanners across the world performing millions of PET scans in patients each year.

The EXPLORER scanner is projected to have an effective sensitivity for total body imaging that is 40-fold higher than current commercial scanners and will is anticipate to open up completely new ways in which PET can be used in biomedical research ar increase in sensitivity can be used in a number of ways, for example to perform scan to the dose received from a round trip flight between San Francisco and London), to molecular fargets that are present in low abundance and beyond the limits of detectin

> A broad range of total-body imar not limited to, improved metastas

international facility

FennPET Explorer

The Developt Furtherny is an extended field withing FV7 structure view read for different and engageth one Reparential uses include tabai-body dynamic imaging, high throughput patient imaging, and imaging nanel RT transmister her her ter successfund and another. The Party FPT Support hearts a 250 as titling resolution, a \$ 5 years spatial resolution, and is built as a modular configuration that can be estended over three depending in

Contact Us

Typical applications

Oncology and Infection

Neurology

Negative florbetapir-PET study

Positive florbetapir-PET study

Cardiology

"I think you'll find it's a bit more complicated than that"

Annihilation and coincidence detection

Types of coincidence events in PET

Variation of count rates: example

For PET component of Siemens Biograph PETCT system from Brambilla et al JNM 2005; 46:2083–2091

Correct PET data for

- Random coincidences
- Detector deadtime
- Variations in detector sensitivity (normalisation)
- Scattered coincidences
- Attenuation
- Variations in resolution?

All built into image reconstruction process – varies between algorithms and manufacturers' implementation of those algorithms

How the data is stored

- SPECT
 - Rotating gamma camera head(s)

- PET
 - Static ring(s)

How the data is stored

- SPECT → Projections
 - As these are what we acquire with the detector in any one position.
- PET \rightarrow Sinograms
 - As PET scanners have rings which naturally lead to these.

These are exactly the **<u>same data</u>**, just stored slightly differently.

Mathematically it's more natural to reconstruct from sinograms.

How the data is stored

from Turkington JNMT 2001 29:1–8

Sinograms

List Mode

Record data in simple list – no real-time image Include regular time markers and physiological markers (e.g. R wave) Afterwards replay list to reformat

Annihilation and coincidence detection – improvements with Time of Flight

'Standard' PET : positron could have met electron anywhere along the line of response

Time of flight PET : time difference between detecting gamma rays locates positron-meets-electron more accurately

First "Time-of-Flight" capable ring systems

GEMINI TF (timing resolution 0.7ns)

LIGHT

Non-TOF

HEAVY Non-TOF TOF

DISCOVERY ST LIGHT (2D)

LIGHT (3D)

ToF gives better signal to noise and hence better image quality, particularly in large patients

Can be used to reduce patient dose and/or scanning time

Pixel values in PET images radioactivity concentration (kBq/ml)

Calibration

Standardised uptake value (SUV)

With all appropriate corrections and calibrations the uptake may be expressed in absolute terms using SUV, which accounts for variations in injected activity and patient weight

SUV(g/ml) =

radiotracer conc.(kBq/ml)
admin.activity(MBq)/patient weight(kg)

SUV – so, how many numbers would you like?

ManPET - MIDAS_v0_5 - PJJ			
File Display Process Analysis Projections MultiModality Registration			
Scale, units=SUV(g/ml) Upper: 9.17283 Lower: 0.000000 Gamma: 1.0 5 10 20 Reset I Lines			
Transaxial (supinf)	Coronal (antpost)	Sagittal (rightleft)	AP MIP <generate></generate>
68		57	
	ROI Tool		
CONTRACTOR AND A DECISION	File Colour		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Orientation:- O Transaxial O Coronal O Sagittal 💿 Proj/MIP		
Change Slice:-			
10 (598,500mm)	Interpolation:- 🗹 Display 🔲 Analysis		
	Change: Upper + +20% -20% Lower -	+0.05 -0.05	
Patient name: BC-2/3 Baseline , (ID=01/05051, DoB=14/11	40% of max = 3.66913 background (mean	n+3 [×] stdev)=2.79483 manually set 3	
	Draw ROI Draw backgro	und ROI Reset ROI	
30 46 0.200000 6.23333 9.17283 9.200 31 46 0.200000 6.43778 9.17283 9.200	Results (units = SLIV(a/ml)) using thresholds:		
32 46 0.200000 6.64222 9.17283 9.200 33 46 0.200000 6.84667 9.17283 9.200	max mean	+/- min voxels volume m	nean [×] vol
34 46 0.200000 7.05111 9.17283 9.200 35 46 0.200000 7.25556 9.17283 9.200	Draw ROI 9.17283 3.26514 1.6	8444 0.545062 1925.00 151.052 4	493.204
36 46 0.200000 7.46000 9.17283 9.200	Background 3.09559 1.27150 0.50	07779 0.222533 1511.00 118.566 1	150.756
37 46 0.200000 7.66444 9.17283 9.200 38 46 0.200000 7.86889 9.17283 9.200	>40% Max. 9.17283 5.18114 1.0		286.215
39 46 0.200000 8.07333 9.17283 9.200 40 46 0.200000 8.27778 9.17283 9.200	Bg 9.17283 4.65750 1.2 Maximum 9.17283 4.80277 1.1	4523 2.79534 959.000 75.2511 3 8357 3.00524 886.000 69.5229 3	

Measured concentration depends on VOI analysis...

Partial volume effect

Recovery loss and spillover

Quantitative PET

Need to standardise :

- Patient preparation
- Image acquisition
- Image reconstruction
- ROI and VOI analysis

Lesion size will vary – how account for when reporting?

Quantitative PET - kinetic analysis

- Generates biochemical rate constants for processes in uptake mechanism
- Results are potentially more indicative of tissue behaviour than simple uptake measures at fixed time after injection (such as SUV)
- Requires time-course of radioactivity concentration in blood and tissue, and compartmental model

Kinetic analysis – e.g. FDG

METABOLIC COMPARTMENT

Kinetic analysis with FDG – in practice

- Quantitative dynamic imaging
- Blood sampling
 - Traditionally arterial
 - Can use venous with heated hand, population reference or image-derived (± normalisation to concentration in venous samples)
- Analysis
 - Non-linear fitting to model
 - Simplified approaches, eg. Patlak graphical analysis (assumes k₄ negligible)

Examples of PET kinetic analysis in clinical practice

Non-linear fit to model – rMBF using ⁸²Rb

Patlak Analysis – FDG in lung tumour

Refs: Patlak et al 1983 J Cereb Blood Flow Metab 3:1 or Peters 1994 Nucl Med Comm 15:669 (recommended!)

Manufacturers are now developing Patlak-based approaches for parametric imaging

Thanks for listening! Any questions?

SIEMENS

BIOGRAPH mCT

0

